|
广义Sierpiński网络拓扑指数信息熵的研究 |
Research on Topological Index Information Entropy of Generalized Sierpiński Network |
投稿时间:2025-05-14 修订日期:2025-06-19 |
DOI: |
中文关键词: Sierpiński网络 拓扑指数 信息熵 |
英文关键词: Sierpiński networks topological indices information entropy |
基金项目:安徽省教育厅自然科学基金项目(KJ2020A0478) |
|
摘要点击次数: 98 |
全文下载次数: 0 |
中文摘要: |
为理解网络变化规律,本文对广义Sierpiński网络边基于度的划分,运用拓扑指数及信息熵的定义,得到十类拓扑指数信息熵的精确表达,分析其拓扑指数信息熵的特性。结果表明:十类拓扑指数信息熵均随网络演化呈上升趋势,表明网络扩展过程中拓扑复杂性显著增加,整体结构复杂性提升。 |
英文摘要: |
To understand the evolution patterns of networks, this study investigates the degree-based edge partitioning of the generalized Sierpiński network. By applying the definitions of topological indices and information entropy, the exact expressions of ten types of topological index-based information entropies are derived, and their characteristics are analyzed. The results show that all ten types of topological index information entropy exhibit an increasing trend with network evolution, indicating a significant increase in topological complexity and an overall rise in structural complexity during the network expansion process. |
View Fulltext
查看/发表评论 下载PDF阅读器 |
关闭 |