文章摘要
广义Sierpiński网络拓扑指数信息熵的研究
Research on Topological Index Information Entropy of Generalized Sierpiński Network
投稿时间:2025-05-14  修订日期:2025-06-19
DOI:
中文关键词: Sierpiński网络  拓扑指数  信息熵
英文关键词: Sierpiński networks  topological indices  information entropy
基金项目:安徽省教育厅自然科学基金项目(KJ2020A0478)
作者单位邮编
刘家保 安徽建筑大学数理学院 230601
司家东* 安徽建筑大学电子与信息工程学院 230601
摘要点击次数: 98
全文下载次数: 0
中文摘要:
      为理解网络变化规律,本文对广义Sierpiński网络边基于度的划分,运用拓扑指数及信息熵的定义,得到十类拓扑指数信息熵的精确表达,分析其拓扑指数信息熵的特性。结果表明:十类拓扑指数信息熵均随网络演化呈上升趋势,表明网络扩展过程中拓扑复杂性显著增加,整体结构复杂性提升。
英文摘要:
      To understand the evolution patterns of networks, this study investigates the degree-based edge partitioning of the generalized Sierpiński network. By applying the definitions of topological indices and information entropy, the exact expressions of ten types of topological index-based information entropies are derived, and their characteristics are analyzed. The results show that all ten types of topological index information entropy exhibit an increasing trend with network evolution, indicating a significant increase in topological complexity and an overall rise in structural complexity during the network expansion process.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭