文章摘要
带形状参数的插值曲线的构造及其应用
The Construction and Application of Interpolating Curves with Shape Parameters
投稿时间:2024-09-04  修订日期:2025-04-16
DOI:
中文关键词: Catmull-Rom样条  样条曲线  形状参数  插值曲线
英文关键词: Catmull-Rom Spline  Spline Curves  Shape Parameters  Interpolating Curves
基金项目:
作者单位邮编
程思捷* 安徽建筑大学 230601
摘要点击次数: 92
全文下载次数: 0
中文摘要:
      摘要:为了提高Catmull-Rom样条曲线的灵活性,本文构造了带两个形状参数的样条曲线和三个形状参数的样条曲线。首先,根据Catmull-Rom样条构造了样条基函数和样条基函数,进而分析了这两个样条基函数的归一性、拟对称性和线性无关性等基本属性。随后,构造了样条曲线和样条曲线,并探讨了其对称性、几何不变性、仿射不变性以及端点特性。通过数值实验验证了样条曲线和样条曲线的形状可调性和连续性,展示了其在复杂曲线造型中的灵活性和优势。同时,与拉格朗日插值曲线的误差对比表明,样条曲线在逼近效果上更具优势。最后,提出了一种基于最小弯曲能量的最优参数选取方法,为样条曲线设计提供了理论支持和实践指导。实例表明,样条曲线和样条曲线提高了Catmull-Rom样条曲线的灵活性,通过选取最优形状参数提高了曲线的光滑度。
英文摘要:
      Abstract:To enhance the flexibility of Catmull-Rom spline curves, this paper constructs spline curves with two shape parameters and spline curves with three shape parameters. First, the spline and spline basis functions are constructed based on the Catmull-Rom spline, and the fundamental properties of these basis functions, such as normality, quasi-symmetry, and linear independence, are analyzed. Then, spline curves and spline curves are constructed, and their symmetry, geometric invariance, affine invariance, and endpoint characteristics are discussed. Numerical experiments verify the shape adjustability and continuity of the spline and spline curves, demonstrating their flexibility and advantages in modeling complex curves. Additionally, a comparison with the error of Lagrange interpolation curves shows that spline curves have superior approximation effects. Finally, an optimal parameter selection method based on minimal bending energy is proposed, providing theoretical support and practical guidance for spline curve design. Examples illustrate that spline and spline curves enhance the flexibility of Catmull-Rom spline curves and improve the smoothness of the curves by selecting the optimal shape parameters.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭