第29卷第1期 2021年2月 安徽建筑大学学报 Journal of Anhui Jianzhu University

DOI:10.11921/j.issn.2095-8382.20210102

钢框架在高温(火灾)下塑性力学特征分析

姜云鹏, 吴明涵, 孙强

(安徽建筑大学 土木工程学院,安徽 合肥 230601)

摘 要:由于在高温条件下钢材的屈服强度和弹性模量随温度升高均有所折减,使得钢结构建筑存在极大的 安全隐患。为了研究钢框架结构在局部火灾下的塑性铰先后出铰顺序。首先通过理论计算,得出高温下钢构 件的温度内力和温度弯矩,再根据力学理论分析塑性铰出铰顺序。最后利用有限元软件对高温环境中两层两 跨平面钢框架整体结构进行模态分析,得到各节点应力变化情况和不同时刻塑性应变情况。结果表明:理论 计算得出塑性铰出铰先后顺序为,梁柱连接处、梁跨中节点处、柱脚。数值模拟出的塑性铰出铰顺序和位置 与理论分析结果一致,可为相似工程提供参考。 关键词:钢框架;热力耦合;塑性铰;有限元;

中图分类号: TU313.2 文献标识码: A

文章编号: 2095-8382(2021)01-006-06

Analysis of Plastic Mechanical Characteristics of Steel Frames at High Temperature

Jiang Yunpeng, WU Minghan, SUN Qiang

(College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract: In view of the yield strength and elastic modulus of steel under high temperature conditions are reduced with increasing temperature, there are great safety hazards in steel structure buildings. In order to study the plastic hinges of steel frame structures under local fires, the hinge sequence is firstly calculated, obtain the temperature internal force and temperature bending moment of the steel member at high temperature. And then analyze the plastic hinge out hinge sequence according to the mechanics theory. Finally, the finite element software is used to carry out the modal analysis of the overall structure of the two-story, two-span plane steel frame in the high temperature environment, and obtain the changes of stress of each node and plastic strain at different times. The results show that the sequence of the plastic hinge out of the theoretical calculation is the beam-column connection, the beam mid-span node, and the column foot. The sequence and position of the plastic hinge out of the numerical simulation are consistent with the theoretical analysis results. It can provide reference for similar projects.

Key words: steel frame; thermal coupling; plastic hinge; finite element;

随着经济快速发展,在现代建筑新形势下,钢 结构成为一种被广泛使用在高层和工业建筑中的 建筑结构类型。钢结构除具有材质较均匀、塑性 好、承载能力强、施工可靠性高等优势,钢材还是 一种不易燃烧的材质,有较高的导热系数。在高 温火灾条件下,钢结构自身会膨胀加快结构软化, 钢材易由温度过高导致屈服强度降低而发生变形。 同时钢框架节点处存在温差,导致不均匀受力,最 终发生整体破坏。现阶段对房屋进行建筑设计时, 往往忽视了结构的抗火能力,然而高层建筑火灾 事件频发,使得钢结构建筑的抗火问题越来越引 起重视。

收稿日期: 2020-09-29

作者简介: 姜云鹏(1995-),男,硕士生,主要研究方向: 钢结构设计与应用。 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

目前,国内外对于钢框架在高温条件下的力学 性能研究取得了一系列成果。强旭红等^[1]在不同 火灾情况下对高强钢 S460 进行材性试验,并与现 有对国产钢 Q460 和欧标钢 S460 的研究成果进行 比较,提出高强钢 S460 在高温下的力学性能退化 拟合公式。李国强等^[2-3]通过对高温下钢柱的极 限承载力进行计算,并与有限元进行比较,分析出 残余应力大小对和分布模式对极限承载力影响较 小。夏月、余红霞^[4-5]等对约束是否影响火灾下刚 节点强度展开深入研究。Dwaikat 教授^[6]研究得出 在某一截面存在的温度梯度会导致截面内力发生 变化的结论。蒋首超、李国强^[7]提出钢框架在局 部高温下的温度内力简化计算的方法。虽然对于 钢结构抗火方面的探究已有较大的进展,但是关于 结构进入塑性阶段的研究较少。基于此,通过计算 钢框架构件在高温下的温度弯矩和温度内力并结 合力学知识,分析得出钢框架塑性铰出铰顺序,对 两层两跨平面局部受火钢框架进行数值模拟分析 并验证正确性,给平面钢框架结构建筑进行抗火设 计提供一定的参考。

1 理论计算

1.1 基本假定

本文在对钢框架高温下进行塑性分析时,基于 以下几个基本假定^[8]:

(1)变形均为小变形,对截面尺寸影响较小;

(2)所有载荷是线性递增的;

(3)荷载施加阶段,惯性力对结构的影响可忽 略不计;

(4) 塑性铰只发生在受力截面, 对截面周围塑 性区不产生影响;

(5)钢框架构件度有一定的刚性,达塑性极限 状态时能够保持稳定。

1.2 工况实例

工况:两层两跨平面钢框架结构,柱间距6m, 层高4m。柱端受水平集中P=10kN,跨中受竖向 集中力F=30kN,两层两跨内部受火,梁、柱受火条 件相同。梁、柱截面尺寸分别为M350×175×7×11 和HM200×200×8×12(单位:mm), 钢材选 用Q235钢材,梁为工字钢梁。受力简图如图1

1.3 理论分析

引入高温下钢构件轴向温度内力 NT

$$N_T = \frac{K_T}{(E_T A / l)_T + K_T} (E_T A) \alpha \left(\frac{T_1 + T_2}{2} - T_0\right) \quad (1)$$

高温下钢构件温度弯矩 $M_L(M_R)$:

$$M_{L}(M_{R}) = \frac{K_{\theta L} \left(\frac{6E_{T}I}{l} + K_{\theta L}\right) M_{T}}{12\left(\frac{E_{T}I}{l}\right)^{2} + 4\frac{E_{T}I}{l} \left(K_{\theta L} + K_{\theta R}\right) + K_{\theta L} K_{\theta R}}$$
(2)

杆件转角 θ:

$$\theta = -\frac{M}{K_{\theta}} \tag{3}$$

式中:KT、K—柱轴向约束刚度;

 K_{θ} —约束转动刚度;

A一杆件截面面积;

l—计算长度;

T₀一杆件温度

 T_1 、 T_2 一杆件两侧温度;

θ—杆件转角;

 E_T 一温度(T_1+T_2)/2时弹性模量;

α_s—材料热膨胀系数;

在梁柱初始温度 T₀=20℃情况下,通过结构计 算软件 SPA2000 得到该工况在常温下的弯矩图, 如图 2 所示。

假定受火梁上下翼缘温度分别为300℃与 400℃,梁温度分布不均匀。受火柱温度为200℃, 柱温度分布均匀。为了方便计算,将钢框架结 构内其他约束杆件近似看作施加在杆端的弹性 约束^[9]。

所示。 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 2 工况在常温下的弯矩图

根据《局部火灾下钢框架温度内力的实用计 算方法》^[7]中计算公式可算出 K_T 、K,代入(1)、(2)、 (3) 式可以计算出构件温度内力、温度弯矩,结果如 表1所示。

表1 构件温度内力和温度弯矩表

构件	$K_T, K / (N / mm)$	N_T / N	$M_L(M_R) / (\mathbf{N} \cdot \mathbf{mm})$
梁	4.23×10^4	3.353×10^{5}	2.355×10^{7}
柱	1.396×10^{4}	2.438×10^{6}	5.642×10^{7}

将表1中求出的受火梁的温度内力和温度弯 矩当做外荷载加到常温模型结点上^[10],计算整个钢 框架的内力变化情况。通过结构计算软件 SPA2000 得到该工况在高温下的弯矩图,如图3所示:

图 3 工况在高温下弯矩图

从力学角度判断塑性铰出铰顺序:结合假定 (4)、图4可知,对构件施加外力,当截面弯矩达塑 性极限弯矩 Mp时,开始出现塑性铰,使截面发生

截面能够传递反向弯矩,直到反向弯矩同样达塑性 极限弯矩 M_P,截面发生转动。对比图 2、图 3 可知: 施加温度荷载后,构件弯矩逐渐增大。梁柱节点的 弯矩最先达塑性极限弯矩,随后超过节点的极限弯 矩,出现塑性铰。而后梁跨中节点和框架柱脚依次 出铰。

图 4 塑性铰性质

数值分析 2

2.1 有限元模型的建立

本节利用 ANSYS 数值模拟软件对工况进行模 拟实验,模型尺寸同工况尺寸,模型建立如图5所 示。固定所有节点 Z 方向位移(UZ),温度荷载以 热传导形式在钢框架结构内传递,选用标准升温曲 线 ISO834 模拟结构环境温度与时间的关系。先采 用 SOLID70 八节点六面体单元进行温度场分析, 再采用 SOLID185 实体结构单元进行非线性有限 元结构分析。将温度场受力与外荷载叠加求解[11]。 通过得到的节点应力大小和塑性应变发展顺序间 接判断出塑性铰的出铰顺序。最终计算到1660 s (1660 s 是结构热力耦合作用破坏时刻)。在钢框 架上选取关键点划分,关键点划分如图6所示。

转动,并传递小于等于 *M_P*的弯矩。而在卸载后, 图 5 有限元模型建立 (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 6 两层一跨钢框架关键点划分示意图

2.2 热力耦合分析

对两层两跨钢框架进行热力耦合分析,将平面 钢框架的应力分布情况以等效应力来探究。得出 钢框架各关键点处应力平均值随时间变化情况,如 表2所示。

由表2可知:升温初期,20~200 s之间,关键点 1、2处应力的增幅最大,应力最大处在梁柱节点。 这是由于温度不断升高,梁柱节点最大应力范围 扩大,出现应力集中现象。200~400 s之间,各关键 点应力随温度升高不断增大,关键点1、2处应力最 大,最大应力位置由梁柱节点转向梁跨中,在高温 条件下受力较大的区域更容易失去原有承载能力。 由于钢梁逐渐失效,应力最大位置转向柱脚。400-1660 s之间,随着温度不断升高,钢材的强度及钢 框架节点的应力逐渐降低,整个钢框架的屈服应力 逐渐减小。为方便分析,选取四个关键点并拟合应 力随时间变化的曲线图,如图7所示。

图 7 节点应力随时间变化曲线

由图 7 可知:选取的四个关键点的应力变化趋势大致相同。这是因为随着温度升高,节点应力不断增大。200℃后钢材自身应力和屈服强度均有所降低。当温度升高至某个温度时,该节点应力曲线同屈服强度下降曲线相交,说明该位置出现塑性铰。根据普通结构钢的高温屈服强度降低系数^[12],得到钢材弹性阶段屈服强度随温度变化情况,作关键点4、5、6、11 各点应力与屈服强度的对比图,如图8所示。框架受火梁、柱翼缘温度随时间变化曲线如图9所示。结合图8、图9可知:关键点4、5、11、6处的应力曲线依次同屈服强度曲线相交,出铰时间依次为186 s、192 s、196 s、210 s。

表 2 钢框架各关键点处应力随时间变化表

单位:MPa

	20s	200s	400s	600s	800s	1000s	1200s	1400s	1660s
1	21.21	203.04	139.49	105.08	60.22	39.39	31.24	29.21	22.04
2	19.89	202.15	139.65	106.45	61.45	40.29	31.59	29.46	22.03
3	32.86	194.78	157.84	111.09	69.74	48.04	42.57	38.62	26.44
4	109.17	189.71	135.56	96.27	62.61	49.91	45.01	40.04	27.82
5	57.69	197.59	136.76	103.86	60.21	40.06	33.70	32.03	26.24
6	31.09	190.93	153.49	107.75	68.17	50.48	45.34	41.38	26.12
7	65.45	193.17	132.52	95.11	58.88	43.75	42.14	40.42	27.95
8	34.58	196.36	136.85	104.54	58.25	36.78	29.45	27.22	22.31
9	37.35	191.86	157.88	112.11	72.24	51.22	44.89	39.62	26.09
10	30.94	196.20	130.78	89.82	51.47	33.98	31.35	28.88	24.60
11	27.58	197.33	131.66	91.27	52.37	34.25	30.95	28.38	24.76
12	29.13	196.57	131.04	90.11	51.74	33.95	30.92	28.37	23.78
13	25.74	197.30	131.58	91.02	52.28	34.12	30.57	28.04	21.72

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

端。由于梁柱节点处和柱脚位置弯矩均较大,梁柱 节点和柱脚位置的塑性应变随着温度升高而增大, 梁柱连接处大面积进入塑性,而受火柱塑性应变相 对较小,梁柱节点先于柱进入塑性阶段。随后在梁 失效过程中,梁跨中位置塑性应变较大,出现塑性 铰。随着温度继续升高,柱刚度逐渐降低,柱脚位 置塑性铰形成。结合应力判断方法和塑性应变数 据得出塑性铰出铰顺序依次为:受火梁柱节点先出 铰,再到梁跨中位置,最后到柱脚位置。

3 结论

(1)本文通过理论分析,得出在局部高温条件下 两层两跨平面钢框架内力分布情况,同时塑性铰出 较顺序依次为:梁柱连接处、梁跨中节点处、柱脚。

(2) 通过有限元模拟, 对高温条件下两层两跨 钢框架进行热-结构耦合模拟分析,分析结果表 明:在高温环境中,钢框架的结构应力因温差较大 发生重分布现象,塑性铰出铰位置和顺序与理论分 析一致,验证了理论分析的准确性。

(3) 在钢结构建筑设计阶段初期, 需考虑结构 的抗火性能,根据塑性铰出铰顺序提前进行保护, 本文对两层两跨钢框架局部高温下塑性铰的研究,

可为相似工程提供理论依据和参考。

10

(b) 400 s 塑性应变图 (c) 1200 s 塑性应变图 (c) 1200 s 塑性应变图

参考文献:

- [1] 强旭红,毋凯冬,姜旭,等.高强钢 S460 高温力学性能 研究与抗火设计建议[J].湖南大学学报(自然科学版), 2018,45(11):37-45.
- [2] 王卫永,李国强.高强度钢柱高温下承载力数值计算 方法[J].土木建筑与环境工程,2011,33(6):13-18.
- [3] 李国强,王卫永.钢结构抗火安全研究现状与发展趋势[J].土木工程学报,2017,50(12):1-8.
- [4] 夏月,王卫永.约束高强度钢柱抗火试验[C]//中国钢结构协会结构稳定与疲劳分会第16届(ISSF-2018) 学术交流会暨教学研讨会论文集.青岛,2018:398-405.
- [5] 余红霞.火灾下钢节点牢固性的研究与展望[J].工程 力学,2011,28(4):116-121.
- [6] Dwaikat M M S, Kodur V K R, Quiel S E, et al. Experimental

behavior of steel beam-columns subjected to fire-induced thermal gradients[J].Journal of Constructional Steel Research,2011,67(1):30-38.

- [7] 蒋首超,李国强.局部火灾下钢框架温度内力的实用 计算方法 [J].工业建筑,2000,30(9):56-61,82.
- [8] 吴明涵.高温下钢框架的塑性力学特征分析[D].合肥: 安徽建筑大学,2019.
- [9] 王陪军.约束钢柱抗火性能试验与理论研究[D].上海: 同济大学,2008.
- [10] 邓济玉.火灾高温下钢筋混凝土框架结构内力计算及 耐火极限分析 [D].长沙:湖南大学,2006.
- [11] 王新敏 .ANSYS 工程结构数值分析 [M]. 北京:人民交 通出版社,2007:53-59.
- [12] 周一超.高强度结构钢受弯构件抗火性能研究 [D].重 庆:重庆大学,2012.