文章摘要
目标检测算法在火灾领域的研究进展综述
Review of Research Progress on Object Detection Algorithms in the Fire Field
投稿时间:2025-11-20  修订日期:2026-01-16
DOI:
中文关键词: 计算机视觉  目标检测算法  火灾  研究进展
英文关键词: Computer Vision  Object Detection Algorithms  Fire  Research Progress
基金项目:
作者单位邮编
黄灏 安徽建筑大学 环境与能源工程学院 230601
黄岳升 安徽建筑大学 电子信息与工程学院 
郑金龙 安徽建筑大学 建筑与规划学院 
蒋瑾 安徽建筑大学 环境与能源工程学院 
丁超* 安徽建筑大学 环境与能源工程学院 230601
摘要点击次数: 8
全文下载次数: 0
中文摘要:
      火灾对生命财产安全构成严重威胁,实现早期精准预警意义重大。近年来,基于深度学习的目标检测技术在火焰与烟雾识别领域发展迅速,逐步取代了传统探测方法。为系统梳理该领域的研究现状与发展趋势,本文利用CiteSpace工具对相关文献进行可视化分析,总结了2019年至2025年10月间的主流技术框架与应用进展,涵盖YOLO系列、DETR、Faster R-CNN、SSD系列等代表性算法及各类轻量化网络结构。研究表明,尽管相关研究已取得显著成果,但在小目标和早期火灾检测、模型轻量化与边缘部署、复杂环境下的鲁棒性及数据支撑与误报控制等方面仍存在明显挑战。未来,通过融合多模态信息、构建高效轻量网络、探索自监督与弱监督学习,并结合时序建模与可解释性分析方法,有望推动火灾检测预警系统向着更精准、鲁棒、实用的方向发展。
英文摘要:
      Fires pose a serious threat to life and property, making early and accurate warning of critical importance. In recent years, deep learning-based object detection technologies have advanced rapidly in the field of flame and smoke recognition, gradually replacing traditional detection methods. To systematically outline the current research status and development trends in this area, this paper employs the CiteSpace tool to conduct a visual analysis of relevant literature, summarizing mainstream technical frameworks and application progress from 2019 to October 2025, including representative algorithms such as the YOLO series, DETR, Faster R-CNN, SSD series, and various lightweight network architectures. The research shows that although significant results have been achieved, notable challenges remain in areas such as small target and early fire detection, model lightweighting and edge deployment, robustness in complex environments, and data support with false alarm control. In the future, the integration of multi-modal information, the construction of efficient lightweight networks, the exploration of self-supervised and weakly-supervised learning, combined with temporal modeling and interpretability analysis, are expected to drive fire detection and early warning systems toward greater accuracy, robustness, and practicality.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭