文章摘要
张若楠,胡丽莉.基于PSO-BP模型的煤炭价格预测研究[J].安徽建筑大学学报,2025,33(5):71-77
基于PSO-BP模型的煤炭价格预测研究
Research on Coal Price Prediction Based on PSO-BP Model
  
DOI:
中文关键词: BP神经网络  PSO-BP神经网络  煤炭价格  价格预测
英文关键词: BP neural network  PSO-BP neural network  coal prices  price prediction
基金项目:安徽省高校省级自然科学研究项目(KJ2021A0621)
作者单位
张若楠 School of Economics and ManagementAnhui Jianzhu UniversityHefei 230601China 
胡丽莉 School of Economics and ManagementAnhui Jianzhu UniversityHefei 230601China 
摘要点击次数: 183
全文下载次数: 0
中文摘要:
      煤炭价格波动会显著影响企业的投资决策和就业市场,有可能推动能源结构的调整,并对国际贸易产生影响。因此,准确预测煤炭价格对我国经济的发展具有重要作用。以秦皇岛港口煤炭价格为预测对象,分别运用PSO-BP神经网络模型和BP神经网络模型展开预测分析。利用典型相关性分析筛选主要影响因素,通过实证对比分析发现,PSO-BP神经网络模型在预测煤炭价格方面表现卓越。与传统 BP神经网络模型预测结果对比,其预测精度显著提升。
英文摘要:
      As China′s primary energy source, coal serves as the dominant fuel for energy-intensive sectors including power generation, steel production, and chemical manufacturing. Its price volatility significantly influences corporate investment decisions and labor markets, while also driving energy structure adjustments and impacting international trade. Accurate coal price forecasting thus holds strategic importance for China′s economic planning.This study focuses on Qinhuangdao Port′s coal prices, employing both PSO-BP and BP neural network models for predictive analysis. Canonical correlation analysis identified key influencing factors, while empirical comparisons revealed the PSO-BP model′s superior predictive accuracy over traditional BP networks. The enhanced algorithm demonstrates particular effectiveness in capturing coal market dynamics, suggesting substantial application potential for energy market forecasting.
查看全文   查看/发表评论  下载PDF阅读器
关闭